Prosodic Boundary Prediction Based on Maximum Entropy Model with Error-Driven Modification

نویسندگان

  • Xiaonan Zhang
  • Jun Xu
  • Lianhong Cai
چکیده

Prosodic boundary prediction is the key to improving the intelligibility and naturalness of synthetic speech for a TTS system. This paper investigated the problem of automatic segmentation of prosodic word and prosodic phrase, which are two fundamental layers in the hierarchical prosodic structure of Mandarin Chinese. Maximum Entropy (ME) Model was used at the front end for both prosodic word and prosodic phrase prediction, but with different feature selection schemes. A multi-pass prediction approach was adopted. Besides, an error-driven rule-based modification module was introduced into the back end to amend the initial prediction. Experiments showed that this combined approach outperformed many other methods like C4.5 and TBL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prosodic Boundary Prediction Based on Maximum Entropy Model with Error-Driven Modification1

Prosodic boundary prediction is the key to improving the intelligibility and naturalness of synthetic speech for a TTS system. This paper investigated the problem of automatic segmentation of prosodic word and prosodic phrase, which are two fundamental layers in the hierarchical prosodic structure of Mandarin Chinese. Maximum Entropy (ME) Model was used at the front end for both prosodic word a...

متن کامل

Prosodic Word Prediction Using a Maximum Entropy Approach

As the basic prosodic unit, the prosodic word influences the naturalness and the intelligibility greatly. Although the research shows that the lexicon word are greatly different from the prosodic word, the lexicon word still provides the important cues for the prosodic word forming. The rhythm constraint is another important factor for the prosodic word prediction. Some lexicon word length patt...

متن کامل

Tree Mapping Template for Prosodic Phrase Bound-ary Predication

This paper presents a novel method driven by tree mapping template (TMT) which improve the accuracy of prosodic phrase boundary prediction. The TMT is capable of capturing the isomorphic relation between non-terminal nodes in hierarchical prosodic tree and nodes in binary tree approximation, performing pruning at the decoding phase and revising the baseline maximum entropy model with boosting m...

متن کامل

Dynamic Conditional Random Fields for Joint Sentence Boundary and Punctuation Prediction

The use of dynamic conditional random fields (DCRF) has been shown to outperform linear-chain conditional random fields (LCRF) for punctuation prediction on conversational speech texts [1]. In this paper, we combine lexical, prosodic, and modified n-gram score features into the DCRF framework for a joint sentence boundary and punctuation prediction task on TDT3 English broadcast news. We show t...

متن کامل

Exploiting Acoustic and Syntactic Features for Prosody Labeling in a Maximum Entropy Framework

In this paper we describe an automatic prosody labeling framework that exploits both language and speech information. We model the syntactic-prosodic information with a maximum entropy model that achieves an accuracy of 85.2% and 91.5% for pitch accent and boundary tone labeling on the Boston University Radio News corpus. We model the acousticprosodic stream with two different models, one a max...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006